

MODULE SPECIFICATION PROFORMA

Module Title:		ntroduction to Experimental Design and Mathematical malysis		Leve	el:	3	Credit Value:	2	0
Module code:	e: LND306 Is this a mew No module?		Code of module being replaced:			Ν/Δ			
Cost Centre(s):	S): GAHT JACS3 code: N/A								
With effect from: November 16									
School:	Social & Life Sciences – Land based Module Leader: Dr D			Dr David	David Skydmore				
Scheduled learning and teaching hours 50 hrs							50 hrs		
Guided independent study				150 hrs					
Placement						0 hrs			
Module duration (total hours) 200 hrs						200 hrs			
Programme(s)	in which to be o	fforod					Co	ro	Option
Programme(s) in which to be offered BSc (Hons) Wildlife and Plant Biology (including Foundation Yr)					 ✓				
BSc (Hons) Equine Science and Welfare Management (including Foundation Yr)					ion 🗸				
FdSc Animal Studies (including Foundation Yr)					~				
BSc (Hons) Forensic Science (including Foundation Yr)					~				
BSc (Hons) Geography, Ecology and Environment (including Foundation Yr)						′r) ✓			
BSc (Hons) Chemistry with Green Nanotechnology (including Foundation Yr)					(r) ✓				

Pre-requisites	
None	

Office use only			
Initial approval: September 14			
APSC approval of modification:	November 16	Version:	2
Have any derogations received LTQC	Yes 🗆 No 🗆] N/A ✓	
If new module, remove previous modu	Yes 🗆 No 🗆]	

Module Aims

- To appreciate the use of scientific methods and concepts
- To understand the principles of experimental design
- To appreciate methods in the interpretation and analysis of data

Intended Learning Outcomes

Key skills for employability

KS1	Written, oral and media communication skills
KS2	Leadership, team working and networking skills

- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At the end of this module, students will be able to			Key Skills		
1	Explain and apply mathematical notation and algebraic expressions.	KS1	KS10		
		KS2			
		KS6			
2	Draw graphs and determine their gradients.	KS1	KS10		
		KS3			
		KS4			
3	Interpret basic statistics and examples of probability and demonstrate their applications in science	KS1	KS6		
		KS4	KS10		
		KS5			
4	Design a laboratory experiment and collect observations	KS1	KS6		
		KS3	KS10		
		KS5			
5	Apply principles in to the analysis and interpretation of data	KS1	KS10		
		KS3			
		KS6			

Transferable skills and other attributes

- Problem solving
- Mathematical applications
- Design, analysis, and synthesis
- ICT
- Presentation skills

Derogations

None

Assessment:

<u>Assessment One</u>: is by means of a Presentation of a data analysis and interpretation on evidence presented in a textbook or scientific journal.

<u>Assessment Two:</u> Exam on mathematical/statistical problems. This will be conducted as an open book assessment

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	3,4,5	Presentation	50	10 mins	
2	1,2,3	Examination	50	1.5 hrs	

Learning and Teaching Strategies:

The module will be presented to students through a series of lectures and learning reinforced through module tutor guided and self-directed study and interactive problem-solving tutorial sessions utilising laboratory equipment where appropriate.

Formative assessment involves tutorial questions and summative assessment is by In Class Test and presentation.

Syllabus outline:

Use of theories and models to explain observations and cause and effect in science

Numbers, scientific notation and significant figures. Algebra and manipulation of algebraic expressions. Powers, indices, exponentials and logarithms. Some simple rules of differentiation. Integration: reversing differentiation.

Experimental design Dependent and independent variables Accuracy and precision Sampling Replication Reproducibility Data analysis Producing and interpreting graphs Averages Percentages Introduction to probability. Use of statistics in experimental analysis Normal distribution. Basic t-test.

Use of ICT in data analysis

Bibliography:

Essential reading

Ruxton, G.D. & Colegrave, N. (2016) *Experimental Design for the Life Sciences*. Oxford: Oxford University Press

Other indicative reading

Lawler, G. (2011) *Understanding Maths: Basic Mathematics Explained.* 4th ed. Conway:Aber Publishing.

Stroud, K.A. & Booth, D.J. (2009) Foundation Mathematics. London: Palgrave Macmillan

Page, S., Berry, J. & Hampson, H. (2002) *Mathematics - A Second Start.* 2nd ed. Cambridge: Woodhead Publishing.